NATIVE MATH

License: MIT native_math version npm bundle size (scoped) npm npm

NATIVE MATH: A tiny math library for node.js, deno, bun & JavaScript on browser

Installation

npm install native_math

http://placehold.jp/24/cb0101/ffffff/280x45.png?text=npm%20install%20native_math

yarn add native_math

http://placehold.jp/24/25799f/ffffff/280x45.png?text=yarn%20add%20native_math

<script src="https://cdn.jsdelivr.net/npm/native_math/index.js"></script>

http://placehold.jp/24/bd483b/fec82f/785x45.png?text=%3Cscript%20src%3D%22https%3A%2F%2Fcdn.jsdelivr.net%2Fnpm%2Fnative_math%22%3E%3C%2Fscript%3E

Some of the solutions provided by native math library

// JavaScript
0.1 + 0.2 = 0.30000000000000004   // 0.1 + 0.2 === 0.3 returns false
0.2 + 0.7 = 0.8999999999999999    // 0.2 + 0.7 === 0.9 returns false
0.7 - 0.2 = 0.49999999999999994   // 0.7 - 0.2 === 0.5 returns false
0.1 * 0.2 = 0.020000000000000004  // 0.1 * 0.2 === 0.02 returns false
0.3 / 0.1 = 2.9999999999999996    // 0.3 / 0.1 === 3 returns false
1.2 % 0.5 = 0.19999999999999996   // 1.2 / 0.5 === 0.2 returns false

// NATIVE MATH library
nm.add(0.1, 0.2)   = 0.3      // nm.add(0.1, 0.2)  === 0.3 returns true
nm.add(0.2, 0.7)   = 0.9      // nm.add(0.2, 0.7)  === 0.9 returns true
nm.subt(0.7, 0.2)  = 0.5      // nm.subt(0.7, 0.2) === 0.5 returns true
nm.mult(0.1, 0.2)  = 0.02     // nm.mult(0.1, 0.2) === 0.02 returns true
nm.divi(0.3, 0.1)  = 3        // nm.divi(0.3, 0.1) === 3 returns true
nm.rem(1.2, 0.5)   = 0.2      // nm.rem(1.2, 0.5)  === 0.2 returns true

<!-- html -->
<!DOCTYPE html>
<html>
	<head>
		<title>NATIVE MATH</title>
		<!--<script src="https://cdn.jsdelivr.net/npm/[email protected]/index.js"></script>-->
		<script src="https://cdn.jsdelivr.net/npm/native_math/index.min.js"></script>
		<!--                This link is the latest mini version ☝                -->
	</head>
	<body>
		<script>
			let myNumber = 0.1;
			const myCube = nm.cube(myNumber);
			// nm.cube(0.1) returns 0.001
			console.log(`(${myNumber})^3 returns ${myCube} in native math library`);
			// Math.pow(0.1, 3) or (0.1 * 0.1 * 0.1) returns 0.0010000000000000002
			console.log(`(${myNumber})^3 returns ${Math.pow(myNumber, 3)} in JavaScript`);
		</script>
	</body>
</html>

// Next JS
// index.js
// npm install native_math
import nm from 'native_math';
import React from 'react';

const Home = () => {

  const price = 4.5 / 3;

  return (
    <div>
      <ul>
        <li>{nm.add([1,8], 1).[1]}</li>
        <li>{nm.fix(1, 2)}</li>
        <li>{nm.fix(nm.phi,2)}</li>
        <li>{nm.stn('8.00')}</li>
        <li>{nm.zeros(2,2)}</li>
        <li>{nm.zeros(2.1,2)}</li>
        <li>{nm.zeros(2.1440000000,2)}</li>
        <li>{nm.zeros(2.1440000000,5)}</li>
        <li>${nm.zeros(price,2)}</li>
        <li>
            <a
              className="App-link"
              href="https://www.npmjs.com/package/native_math"
              target="_blank"
              rel="noopener noreferrer"
            >
              Learn NATIVE MATH Library
            </a>
        </li>
      </ul>
    </div>
  );
};

export default Home;

// React JS
// App.js
// npm install native_math
import { divi, zeros, stn, nts } from 'native_math';
import logo from './logo.svg';
import './App.css';

function App() {
	const price = divi(4.2, 3);
	const priceWithFormat = zeros(price, 2);

	return (
		<div className="App">
			<header className="App-header">
				<img src={logo} className="App-logo" alt="logo" />
				<p>
					Edit <code>src/App.js</code> and save to reload.
				</p>
				<a className="App-link" href="https://reactjs.org" target="_blank" rel="noopener noreferrer">
					Learn React
				</a>
				<br />
				<a className="App-link" href="https://www.npmjs.com/package/native_math" target="_blank" rel="noopener noreferrer">
					Learn NATIVE MATH Library
				</a>
				<h2>
					<p>${nts(0.0)}</p>
					Free ${zeros(stn('0.00'), 2)} <strike>${priceWithFormat}</strike>
				</h2>
				<small>Type: {typeof priceWithFormat}</small>
			</header>
		</div>
	);
}

export default App;

// Node JS
// index.js
// npm install native_math

// import nm from 'native_math';
// console.log(nm.sin.deg(nm.range(0, 90, 30)));
// Or

import { sin, range } from 'native_math';
console.log(sin.deg(range(0, 90, 30)));

Examples

Use console.log() to output the result. console.log(nm.abs(-3.6)); // 3.6

const nm = require(`native_math`);

nm.abs(-3.6); // 3.6

nm.subt(2, 5); // -3

nm.sqr(2) + nm.sqrt(4); // 6

nm.sqr(4) + nm.sqrt(4) / nm.pi; // 16.63661977236758

nm.e; // 2.718281828459045

nm.exp(1); // 2.718281828459045

nm.exp(-1); // 0.367879441171442

nm.exp(nm.pi / 3); // 2.849653908226361

nm.log(10); // 2.302585092994046

nm.ln2; // 0.693147180559945
nm.ln10; // 2.302585092994046

nm.log2e; // 1.442695040888963
nm.log10e; // 0.434294481903252

nm.log1p(5); // 1.791759469228055

nm.log(mnjs.e); // 1

nm.hypot(4); // 4
nm.hypot([4]); // 4
nm.hypot(3, 4); // 5
nm.hypot([3, 4]); // 5
nm.hypot(4, 2, 4); // 6
nm.hypot([4, 2, 4]); // 6
nm.hypot([-3, -4]); // 5
nm.hypot(-3, -4); // 5
nm.hypot([-4]); // 4
nm.hypot(-4); // 4
nm.sqrt(nm.add(nm.sqr(6), nm.sqr(8))) === nm.hypot(6, 8); // true
nm.hypot([-3, -4], 1); // Error: NATIVE MATH ERROR No. 01 : 05
mnjs.hypot([-3, -4], [1]); // Error: NATIVE MATH ERROR No. 01 : 05
mnjs.hypot([-3, -4, '1']); // Error: NATIVE MATH ERROR No. 01 : 05

nm.fix(2.718281828459045, 2); // 2.72

nm.inv(10); // 0.1

nm.ceil(1.1); // 2
nm.ceil(-1.1); // -1
nm.ceil([-0.2, 0, 0.2]); // [-0, 0, 1]

nm.max(1, 10, 3, -2); // 10
nm.max([1, 10, 3, -2]); // 10
nm.max(1, 10, 3, ''); // Error: NATIVE MATHnm ERROR No. 01 : 05

nm.min(5, 1, -3.2, 0.5, 3); // -3.2
nm.min([5, 1, -3.2, 0.5, 3]); // -3.2
nm.min(); // Error: NATIVE MATHnm ERROR No. 01 : 05
nm.min([]); // Error: NATIVE MATHnm ERROR No. 01 : 05: This function accepts numeric arguments or one numeric array argument. (num1, num2, ..., num) => {} or ([num1, num2, ..., num]) => {}

nm.pow(2, 4); // 16

nm.pow(2, -2.5); // 0.176776695296637

nm.cbrt(8); // 2

nm.nrt(0.0001, 4); // 0.1
nm.nrt(Infinity, Infinity); // 1
nm.nrt(Infinity, Infinity) === nm.pow(Infinity, 1 / Infinity); // true

nm.tau; // 6.283185307179586

nm.sin(1); // 0.841470984807897
nm.sin.rad(1); // 0.841470984807897
nm.sin(1) === nm.sin.rad(1); // true

nm.dtr(30); // 0.523598775598299
nm.sin.deg(30); // 0.5
nm.sin.deg(30) === nm.sin(mnjs.dtr(30)); // true

nm.cos.deg(60); // 0.5
nm.cos(0); // 1
nm.cos.rad(0); // 1
nm.cos(1) === nm.cos.rad(1); // true

nm.tan.deg(45); // 1

nm.tan(0.5); // 0.54630248984379
nm.tan(0.5) === nm.tan.rad(0.5); // true

nm.tan.deg(90); // -Infinity

1 / nm.sin.deg(30); // 2
nm.csc.deg(30)(
	// 2

	1 / nm.cos.deg(60)
) === nm.sec.deg(60); // true
console.log(nm.sec.deg(60))(
	// 2

	1 / nm.tan.deg(45)
) === nm.cot.deg(45); // true
nm.cot.deg(45); // 1

nm.cot.deg(0); // Infinity

nm.acsc(mnjs.csc(0.67)); // 0.67

nm.asec.rad(1) === nm.asec(1); // true

nm.stn('123'); // 123
nm.nts(123); // "123"

/***** Matrices *****/
nm.range(1, 10, 1); //  [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]
nm.range(1, 10); //  [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]
nm.range(10, 1, 1); //  [ 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 ]
nm.range(10, 1); //  [ 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 ]
nm.range(1, 5, 0.5); //  [ 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5 ]
nm.range(1, 0, 0.2); //  [ 1, 0.8, 0.6, 0.4, 0.2, 0 ]
nm.range(10, 1, 2); //  [ 10, 8, 6, 4, 2 ]
nm.range(-20, 1, 0); //  Error: NATIVE MATH ERROR No. 02 : 01: The step parameter should not be:
//  1/ null
//  2/ equal or less than zero.
//  3/ greater than the absolute difference between the first and second parameter

nm.monolist(1, 5); //  [ 1, 1, 1, 1, 1 ]
nm.monolist(0.5, 3); //  [ 0.5, 0.5, 0.5 ]
nm.monolist(0, 5); //  [ 0, 0, 0, 0, 0 ]
nm.monolist(-0.5, 3); //  [ -0.5, -0.5, -0.5 ]
nm.monolist(-1, 5); //  [ -1, -1, -1, -1, -1 ]
nm.monolist(5, 1.1); //  RangeError: Invalid array length

// Most of the NATIVE MATH functions return a number or an array of numbers

const myArray = nm.range(0, 90, 30);
const errArray = [0, 30, '60', 90];

myArray; //  [ 0, 30, 60, 90 ]
errArray; //  [ 0, 30, '60', 90 ]

nm.cube(myArray); // [ 0, 27000, 216000, 729000 ]

nm.sin.deg(myArray[1]); // 0.5
nm.sin.deg(myArray); // [ 0, 0.5, 0.866025403784439, 1 ]

nm.abs(errArray); // Error: NATIVE MATHnm ERROR No. 01: This function accepting either a number or an array.
// In the case of an array, all of its elements must be numbers.
nm.dtr(myArray); // [ 0, 0.523598775598299, 1.047197551196598, 1.570796326794897 ]

// Note the result may change in some functions depending on the position of the arguments

nm.add(2, 2); //  4
nm.add([0, 2], [4, 8]); //  [ 4, 10 ]
nm.add([4, 8], [0, 2]); //  [ 4, 10 ]
nm.add(2, [1, 2]); //  [ 3, 4 ]
nm.add([1, 2], 2); //  [ 3, 4 ]
nm.subt(2, [1, 2]); //  [ 1, 0 ]
nm.subt([1, 2], 2); //  [ -1, 0 ]
nm.subt([0, 2], [4, 8]); //  [ -4, -6 ]
nm.subt([4, 8], [0, 2]); //  [ 4, 6 ]
nm.mult(2, [1, 2]); //  [ 2, 4 ]
nm.mult([1, 2], 2); //  [ 2, 4 ]
nm.divi(2, [1, 2]); //  [ 2, 1 ]
nm.divi([1, 2], 2); //  [ 0.5, 1 ]
nm.divi([0, 2], [4, 8]); //  [ 0, 0.25 ]
nm.divi([4, 8], [0, 2]); //  [ Infinity, 4 ]
nm.add([2], [1, 2]); // Error: NATIVE MATH ERROR No. 01 : 03: This function accepting two arguments of numbers, arrays, or one of them must be a number, and the other must be an array; In the case of arrays, all elements must be a number, the length of arrays must be equal

nm.pow(4, [1, 2, 3]); //  [ 4, 16, 64 ]
nm.pow([1, 2, 3], 4); //  [ 1, 16, 81 ]

nm.nrt(8, [1, 2, 3]); //  [ 8, 2.82842712474619, 2 ]
nm.nrt([1, 2, 3], 8); //  [ 1, 1.090507732665258, 1.147202690439877 ]
nm.nrt([1, 3], [3, 1]); //  [ 1, 3 ]
nm.nrt([3, 1], [1, 3]); //  [ 3, 1 ]

nm.mult(0.2, [5, 10, 15]); //  [ 1, 2, 3 ]
nm.mult(0.2, nm.range(5, 15, 5)); //  [ 1, 2, 3 ]
nm.mult([0.2, 0.2, 0.2], [5, 10, 15]); //  [ 1, 2, 3 ]
nm.mult(nm.monolist(0.2, 3), [5, 10, 15]); //  [ 1, 2, 3 ]
nm.mult(0.2, [5, 10, 15])[1] === nm.mult(nm.monolist(0.2, 3), [5, 10, 15])[1]; // true

nm.imul(0xffffffff, [1, 2, 3, 4, 5]); //  [ -1, -2, -3, -4, -5 ]
nm.rib(100000, 999999); //  returns random integer between two values, inclusive min and max value

// Remember that:
// 0 / 0 = NaN, NaN / NaN = NaN, Infinity / Infinity = NaN, Infinity / NaN = NaN
// NaN / Infinity = NaN, 0 / NaN = NaN, NaN / 0 = Nan
// 0 / Infinity = 0, Infinity / 0 = Infinity
// Infinity === Infinity returns true. Infinity is equal to itself
// Infinity > Infinity, return false
// NaN === NaN, NaN > NaN, NaN < NaN, returns false
// Infinity === NaN, Infinity > NaN, Infinity < NaN, returns false

// The change function replace x (number or numeric array element) with z if x = y
// The change and change.isEqual functions are the same
// nm.change(x=1, y=1, z=0)
nm.change(1, 1, 0) === mnjs.change.isEqual(1, 1, 0); // returns true
nm.change(1, 1, 0); //  returns 0
nm.change(1, NaN, 0); //  returns 1
nm.change(Infinity, Infinity, 0); //  returns 0
nm.change([0, NaN, 1, Infinity], NaN, 0); //  returns [0, NaN, 1, Infinity]
// where [0 = old value, NaN = old value, 1 = old value, Infinity = old value], nothing changed!
nm.change([0, NaN, 1, Infinity], Infinity, 0); //  returns [0, NaN, 1, 0]
// where [0 = old value, NaN = old value, 1 = old value, 0 = new value ], only Infinity value replaced with 0

// The change.isNotEqual function replace x (number or numeric array element) with z if x is not equal to y
// nm.change.isNotEqual(x=1, y=1, z=0)
nm.change.isEqual(1, 1, 0) !== nm.change.isNotEqual(1, 1, 0); // returns true
nm.change.isNotEqual(1, 1, 0); //  returns 1, where 1 is the old value of x
nm.change.isNotEqual(1, NaN, 0); //  returns 0, where 0 is the new value of x
nm.change.isNotEqual(Infinity, Infinity, 0); //  returns Infinity
nm.change.isNotEqual([0, NaN, 1, Infinity], NaN, 0); //  returns [0, 0, 0, 0]
// where [0 = new value, 0 = new value, 0 = new value, 0 = new value], all elements changed with new values!
nm.change.isNotEqual([0, NaN, 1, Infinity], Infinity, 0); //  returns [0, 0, 0, Infinity]
// where [0 = new value, 0 = new value, 0 = new value, Infinity = old value ], all elements replaced with 0 except Infinity
nm.change.isGreater([0, NaN, 1, Infinity], NaN, 0); //  returns [0, NaN, 1, Infinity]
nm.change.isLess([0, NaN, 1, Infinity], NaN, 0); //  returns [0, NaN, 1, Infinity]
nm.change.isGreaterOrEqual([0, NaN, 1, Infinity], Infinity, 0); // returns [0, NaN, 1, 0]
// where orEqual is true (Infinity replaced by 0)
nm.change.isLessOrEqual([0, NaN, 1, Infinity], Infinity, 0); // returns [0, NaN, 0, 0]
// change.isFiniteNum(x, y) or change.isFiniteNum(xArray, y)
nm.change.isFiniteNum([0, NaN, 1, Infinity], Infinity); // returns [Infinity, NaN, Infinity, Infinity]
// where [Infinity = new value, NaN = old value, Infinity = new value, Infinity = old value]
nm.change.isInfinity([-Infinity, NaN, 1, Infinity], 0); // returns [0, NaN, 1, 0]  (change ±Infinity)
nm.change.isPlusInfinity([-Infinity, NaN, 1, Infinity], 0); // returns [-Infinity, NaN, 1, 0]
nm.change.isMinusInfinity([-Infinity, NaN, 1, Infinity], 0); // returns [0, NaN, 1, Infinity]
nm.change.isNAN([-Infinity, NaN, 1, Infinity], 0); // returns [-Infinity, 0, 1, Infinity]

// Fermat number
nm.fermat(-1) or nm.fermat(1.2) // returns error
nm.fermat(0) // returns 3
nm.fermat([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) // returns [5, 17, 257, ..., 1.3407807929942597e+154, Infinity]

Demo Projects


Svelte Demo Project [https://svelte-native-math-chartjs.vercel.app]



React Demo Project [https://react-native-math-plotlyjs.vercel.app]


NATIVE MATH Object Keys

Key Definition Value
abs The absolute value of a number function: abs(num)
add Addition function: add(num1, num2)
acos Inverse cosine (in radians) function: acos(num)
acos.rad Inverse cosine (in radians) function: acos.rad(num)
acos.deg Inverse cosine (in degrees) function: acos.deg(num)
acosh Inverse hyperbolic cosine (in radians) function: acosh(num)
acosh.rad Inverse hyperbolic cosine (in radians) function: acosh.rad(num)
acosh.deg Inverse hyperbolic cosine (in degrees) function: acosh.deg(num)
acot Inverse cotangent (in radians) function: acot(num)
acot.rad Inverse cotangent (in radians) function: acot.rad(num)
acot.deg Inverse cotangent (in degrees) function: acot.deg(num)
acoth Inverse hyperbolic cotangent (in radians) function: acoth(num)
acoth.rad Inverse hyperbolic cotangent (in radians) function: acoth.rad(num)
acoth.deg Inverse hyperbolic cotangent (in degrees) function: acoth.deg(num)
acsc Inverse cosecant (in radians) function: acsc(num)
acsc.rad Inverse cosecant (in radians) function: acsc.rad(num)
acsc.deg Inverse cosecant (in degrees) function: acsc.deg(num)
acsch Inverse hyperbolic cosecant (in radians) function: acsch(num)
acsch.rad Inverse hyperbolic cosecant (in radians) function: acsch.rad(num)
acsch.deg Inverse hyperbolic cosecant (in degrees) function: acsch.deg(num)
asec Inverse secant (in radians) function: asec(num)
asec.rad Inverse secant (in radians) function: asec.rad(num)
asec.deg Inverse secant (in degrees) function: asec.deg(num)
asech Inverse hyperbolic secant (in radians) function: asech(num)
asech.rad Inverse hyperbolic secant (in radians) function: asech.rad(num)
asech.deg Inverse hyperbolic secant (in degrees) function: asech.deg(num)
asin Inverse sine (in radians) function: asin(num)
asin.rad Inverse sine (in radians) function: asin.rad(num)
asin.deg Inverse sine (in degrees) function: asin.deg(num)
asinh Inverse hyperbolic sine (in radians) function: asinh(num)
asinh.rad Inverse hyperbolic sine (in radians) function: asinh.rad(num)
asinh.deg Inverse hyperbolic sine (in degrees) function: asinh.deg(num)
atan Inverse tangen (in radians) function: atan(num)
atan.rad Inverse tangen (in radians) function: atan.rad(num)
atan.deg Inverse tangen (in degrees) function: atan.deg(num)
atanh Inverse hyperbolic tangen (in radians) function: atanh(num)
atanh.rad Inverse hyperbolic tangen (in radians) function: atanh.rad(num)
atanh.deg Inverse hyperbolic tangen (in degrees) function: atanh.deg(num)
ceil The ceil function returns the smallest integer greater than or equal to a number function: ceil(num)
change The change function replace x (number or numeric array element) with z if x = y function: change(x, y, z)
change.isEqual The change.isEqual function replace x (number or numeric array element) with z if x = y function: change.isEqual(x, y, z)
change.isNotEqual The change.isNotEqual replace x (number or numeric array element) with z if x is not equal to y function: change.isNotEqual(x, y, z)
change.isGreater The change.isGreater replace x (number or numeric array element) with z if x is greater than y function: change.isGreater(x, y, z)
change.isLess The change.isLess replace x (number or numeric array element) with z if x is less than y function: change.isLess(x, y, z)
change.isGreaterOrEqual The change.isGreaterOrEqual replace x (number or numeric array element) with z if x is greater than or equal to y function: change.isGreaterOrEqua(x, y, z)
change.isLessOrEqual The change.isLess replace x (number or numeric array element) with z if x is less than y function: change.isLessOrEqual(x, y, z)
change.isFiniteNum The change.isFiniteNum replace x (number or numeric array element) with y if x is finite function: change.isFiniteNum(x,y)
change.isInfinity The change.isInfinity replace x (number or numeric array element) with y if x is infinity function: change.isInfinity(x,y)
change.isPlusInfinity The change.isPlusInfinity replace x (number or numeric array element) with y if x is plus infinity function: change.isPlusInfinity(x,y)
change.isMinusInfinity The change.isMinusInfinity replace x (number or numeric array element) with y if x is minus infinity function: change.isMinusInfinity(x,y)
change.isNAN The change.isNAN replace x (number or numeric array element) with y if x is NAN function: change.isNAN(x,y)
cos Cosine (in radians) function: cos(angleRadians)
cos.rad Cosine (in radians) function: cos.rad(angleRadians)
cos.deg Cosine (in degrees) function: cos.deg(angleDegrees)
cosh Hyperbolic cosine (in radians) function: cosh(angleRadians)
cosh.rad Hyperbolic cosine (in radians) function: cosh.rad(angleRadians)
cosh.deg Hyperbolic cosine (in degrees) function: cosh.deg(angleDegrees)
csc cosecant (or cosec) function: csc(angleRadians)
csc.rad cosecant (or cosec) function: csc.rad(angleRadians)
csc.deg Cosecant (in degrees) function: csc.deg(angleDegrees)
csch Hyperbolic cosecant (or cosec) function: csch(angleRadians)
csch.rad Hyperbolic cosecant (or cosec) function: csch.rad(angleRadians)
csch.deg Hyperbolic cosecant (in degrees) function: csch.deg(angleDegrees)
cube Cube (n)^3 function: cube(num)
cbrt Cube Root function: cbrt(num)
cot Cotangent (or cotan or cotg or ctg or ctn). (in radians) function: cot(angleRadians)
cot.rad Cotangent (or cotan or cotg or ctg or ctn). (in radians) function: cot.rad(angleRadians)
cot.deg Cotangent (in degrees) function: cot.deg(angleDegrees)
coth Hyperbolic cotangent (or cotan or cotg or ctg or ctn). (in radians) function: coth(angleRadians)
coth.rad Hyperbolic cotangent (or cotan or cotg or ctg or ctn). (in radians) function: coth.rad(angleRadians)
coth.deg Hyperbolic cotangent (in degrees) function: coth.deg(angleDegrees)
dtr Degrees to Radians conversion function: dtr(angleDegrees). Result in radians
divi Division function: divi(numerator, denominator)
e The Number e (Euler’s number) number: 2.718281828459045
exp The power of e (Euler’s number) function: exp(power)
expm1 The expm1 function returns e^x – 1, where x is the argument, and e the base of the natural logarithms function: expm1(power)
fermat The fermat function accepting a non-negative integer function: fermat(num)
fix Fix to the certain decimal point function: fix(num, point)
floor The floor function returns the largest integer less than or equal to a given number function: floor(num)
fround The fround function returns the nearest 32-bit single precision float representation of a Number function: fround(num)
hypot The square root of the sum of squares function: hypot(num1, num2, …, num) or function: hypot([num1, num2, …, num])
imul The imul function returns the result of the C-like 32-bit multiplication of the two parameters function: imul(num1, num2)
inv The inverse of a number function: inv(num)
ln2 The natural logarithm of 2 number: 0.693147180559945
ln10 The natural logarithm of 10 number: 2.302585092994046
log The Natural logarithm (base e) of a number function: log(x) is equivalent to ln(x) in mathematics
log1p The natural logarithm (base e) of 1 + a number function: log1p(x)
log2 The base 2 logarithm of a number function: log2(x)
log10 The base 10 logarithm of a number function: log10(x)
log2e The base 2 logarithm of E number: 1.4426950408889634
log10e The base 10 logarithm of E number: 0.434294481903252
max Max function returns the largest-valued number function: max(num1, num2, …, num) or max(array of numbers)
min Min function returns the lowest-valued number function: min(num1, num2, …, num) or min(array of numbers)
monolist The monolist function returns an array of numbers of equal values, specifying the element’s value and the size of the array. function: monolist(value, size). It returns an array
mult Multiplication function: mult(num1, num2)
nrt N Root function: nrt(num, root), when root=n={1,2,..}
nts Number to String conversion function: nts(num). Result as string
pi The Number pi (π) number: 3.141592653589793
phi The Golden Ratio (Phi) number: 1.618033988749895
pow power function: pow(num, power)
range The range function returns a sequence of numbers, starting from start value by default, and increments or decrements by step value, and stops before or in specified end value. function: range(start, end, step). It returns an array
rem The remainder function (%) returns the remainder or signed remainder of a division, after one number is divided by another (called the modulus of the operation) function: rem(num1, num2)
rib The rib function returns a random integer between two values, inclusive min and max value function: rib(min, max)
round The round function returns the value of a number rounded to the nearest integer function: round(num)
rtd Radians to Degrees conversion function: rtd(angleRadians). Result in degrees
sec Secant (in radians) function: sec(angleRadians)
sec.rad Secant (in radians) function: sec.rad(angleRadians)
sec.deg Secant (in degrees) function: sec.deg(angleDegrees)
sech Hyperbolic secant (in radians) function: sech(angleRadians)
sech.rad Hyperbolic secant (in radians) function: sech.rad(angleRadians)
sech.deg Hyperbolic secant (in degrees) function: sech.deg(angleDegrees)
sign The sign function (+, -) function: sign(num). It returns -1, -0, 0, 1
sin Sine (in radians) function: sin(angleRadians)
sin.rad Sine (in radians) function: sin.rad(angleRadians)
sin.deg Sine (in degrees) function: sin.deg(angleDegrees)
sinh Hyperbolic sine (in radians) function: sinh(angleRadians)
sinh.rad Hyperbolic sine (in radians) function: sinh.rad(angleRadians)
sinh.deg Hyperbolic sine (in degrees) function: sinh.deg(angleDegrees)
sqr Square function: sqr(num)
sqrt Square Root function: sqrt(num)
stn String to Number conversion function: stn(str). Result as number
subt Subtraction function: subt(num1, num2)
sum The Sum Function, Also Called The Reducer Function. The final result of running the sum function across all elements of the array is a single value. The first argument should be one (numeric or empty) array and the second should be a number. function: sum(Array, number) or sum(Array), number=0
tan Tangent (in radians) function: tan(angleRadians)
tan.rad Tangent (in radians) function: tan.rad(angleRadians)
tan.deg Tangen (in degrees) function: tan.deg(angleDegrees)
tanh Hyperbolic tangent (in radians) function: tanh(angleRadians)
tanh.rad Hyperbolic tangent (in radians) function: tanh.rad(angleRadians)
tanh.deg Hyperbolic tangent (in degrees) function: tanh.deg(angleDegrees)
tau The tau constant (2 x pi) number: 6.283185307179586
trunc Returns the integer part of a number function: trunc(num)
zeros Add .00 to number function: zeros(num, point). Result as string

GitHub

View Github